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ABSTRACT

Numerous geophysical inverse problems prove difficult be-
cause the available measurements are indirectly related to the
underlying unknown dynamic state and the physics gov-
erning the system may involve imperfect models or un-
observed parameters. Data assimilation addresses these
difficulties by combining the measurements and physical
knowledge. The main challenge in such problems usually
involves their high dimensionality and the standard statisti-
cal methods prove computationally intractable. This paper
develops and addresses the theoretical convergence of a new
high-dimensional Monte Carlo approach called the localized
ensemble Kalman smoother.

Index Terms— multidimensional signal processing; re-
cursive estimation; Kalman filter; remote sensing

1. INTRODUCTION

The ensemble Kalman filter (EnKF) [1] has seen extensive
application to a wide variety of high-dimensional data assimi-
lation applications (see references in [1]), including oceanog-
raphy, operational use in numerical weather prediction, and
solar imaging [2]. The goal in data assimilation is to com-
bine empirical measurements with a first-principles dynamic
model to produce a statistically optimal time-dependent so-
lution to the underlying high-dimensional inverse problem.
The popularity of the EnKF is due to the relative simplicity
of its implementation, ease of parallelization, no requirement
for adjoint physics models which can prove difficult to derive,
and competitive performance relative to other data assimila-
tion approaches.

Often in data assimilation, the filtered or causal estimate
is of interest. Forecasts are usually derived by applying the
dynamic model to the most recent filtered estimate to predict
the future physical state. When the dynamics are chaotic or
incompletely modeled and forecasting is difficult or even im-
possible, then the filtered estimate can serve as a useful “now-
cast” of the current physical state. Smoothed estimates uti-
lize all available measurement to produce retrospective non-
causal estimates of the physical state with the least error.
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Several ensemble Kalman smoother (EnKS) approaches
have been developed to solve smoothing problems in data
assimilation. One approach is given in [1], but the method
is limited to relatively low-dimensional problems. The ap-
proach most similar to this work is by Khare et al. [3], which
considers high-dimensional applications. However, they do
not consider the convergence properties of their approach and
neglect the smoothed error covariance.

In this paper, we present a new EnKS that utilizes local-
ization to reduce the computational cost for high-dimensional
applications. Localization has been used extensively for this
purpose for the EnKF and works by imposing an a priori phys-
ically motivated correlation length restriction on the structure
of the error covariance matrix. The resultant Monte Carlo ap-
proximated error covariance is then guaranteed to be sparse
and more easily handled in subsequent computations. The
theoretical contributions of this work include a theorem re-
garding the convergence of the method as the ensemble size
increases and a connection to a result known in radar process-
ing that provides the means to implement a numerically stable
square-root form [4] localized EnKF or EnKS.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the linear state-space signal model considered
in this work. Section 3 provides the equations for the Kalman
filter (KF) that serves as the first step for the Bryson-Frazier
(BF) Kalman smoother (KS) defined in Section 4. Next, the
localized EnKS is developed in Section 5 and is shown to
be a localized Monte Carlo implementation of the BF KS by
the convergence theorem in Section 6. A numerical example
is provided in Section 7 showing a comparison between the
KS, localized KS, and EnKS. Finally, conclusions are given
in Section 8.

2. SIGNAL MODEL

The linear dynamic signal model is defined by the state-space
equations:

Tip1 =Fiz; + u;, y,=Hizi +v;. (D
In the above, the /N-dimensional vector a; is the unknown at
time index ¢, the time index has the range 1 <17 < I, the M-

dimensional vector y; is the ¢th measurement, the matrices
. A
F; and H; are known, as are the covariances Q; = Cov(u;),



3. KALMAN FILTER

Under the signal model of Section 2, the well-known KF [4]
is the method to compute iiu, the filtered linear minimum
mean square error (LMMSE) estimate of the unknown state
@; given the set of measurements {y, ..., y,;}. The method
proceeds recursively in two stages. The first is the measure-
ment update defined by

K, =Py, H; (H; Py, _H +R)™" (2
T = X1 + Ki (y; — Hi Zyp5-1) €)]
Pz‘\i = Pi|i—1 - K; H; Pm‘—1 “4)

where K ; is commonly referred to as the Kalman gain. The
second step is the time update:

Zip1)i = Fi %y, Pi+1\i=FiPz‘\inT+Qi- Q)

4. BRYSON-FRAZIER KALMAN SMOOTHER

The BF KS [4] consists of three stages. The first stage pro-
cesses the complete data set through the KF described in Sec-
tion 3 and, for each time index ¢, stores the following quanti-
ties to disk for later use: the Kalman gain K; (2), the innova-
tion e; 2 y, — H; ;’Ei‘i_l, and the innovation covariance

R.; £ Cov(e;) = R; + H; Py, HzT (©)

in addition to the filtered estimate Z;); and error covariance
P;|;. The second stage processes the time-reversed data set
to compute the adjoint variable (where A;;; = 0)

Ni=(I-K H)"F/ A\j1+H] R je; (1)

and its covariance (where Ay, ; = 0, the matrix with all ele-
ments equal to 0)

A=IT-K H) 'FI'A F;(I - K, H;)
+H] R_\H; 8)

through the above backwards recursions. The final stage com-
bines quantities found in the first two stages to compute the
smoothed estimate and error covariance:

Zijr = Ty + Piji FT A )
Pyi.y=Py;— Py Fi Aiy1 F; Py, (10)
5. ENSEMBLE KALMAN SMOOTHER

The EnKS can be thought of as a Monte Carlo approximation
to the BF KS that utilizes localization. The first stage of the

EnKS is the EnKF (see [5] for a development that uses the
same notation as this work). At each time index i, the fol-
lowing quantities are stored to disk for later use: the filtered
estimate ;T:m-, the ensemble Kalman gain ﬁl (see (23) in [5)),
the ensemble innovation €; £ y, — H; x;|;—1, the ensemble
innovation covariance

EeiéRi+Hi (Cioﬁih'—l) HiT, (11)

where C; is the covariance taper matrix that defines the a
priori error covariance localization structure, o denotes the
Hadamard or element-by-element matrix product. The prior
and posterior ensembles denoted ')Zm_l and f)fm-, respec-
tively, must also be stored where the /th column of the matrix
')ZW is given by wa-] = ;T:é‘j where ;T:élj is the Ith en-
semble member.

The second stage of the EnKS involves the following
backwards recursion on the ensemble adjoint variable (where

Ari1 = 0):

G0

N=(I-K H)F'A\,+H'R & (12
and its covariance (where A 741 =0)

A=(I-KH)F'Ko+R 2z, 13
and [Z] . ) - N(0, I). 1t is easily shown that A; =

A; KlT /(L—1) and the approximation is within the sample er-
ror when no covariance tapering is applied, i.e., when C; = 1
(a matrix with all elements equal to 1).

The presence of a square root of the ensemble innovation

covariance R, ; in (13) poses a significant implementation
challenge especially. Any hope to find a square root factor to
(11) rests on factoring the prior tapered ensemble covariance.
To find this square root factor, first note that

CioPyy = (O ) o (B2, BL2) (4

T . . .
where AT/2 £ (Al/ ) Cl-T/ ?is a convolution matrix

used in the construction of the covariance taper matrix, and
=1/2 = . .
P;;_1 = Xyji—1/(V L —1). Square root factors involving

Hadamard products such as (14) have been addressed in the
literature on spatial temporal adaptive processing in radar
applications [6]. The following lemma addresses the relevant
square root factorization.

Lemma 1: Let A be an M x N matrix and B be an M x P
matrix. Then

(AAT) o (BBT) = (ATo BT)" (Ao BT) (15
where ® denotes the Khatri-Rao matrix product. The Khatri-
Rao product of the matrices A” and B” is defined by

AT ®BT == [[A](l, 1) ® [B](l, 1) [A](Z\/I, 1) ® [B](JVI,:)}
(16)



where ® is the Kronecker matrix product, [-](m’ ) selects the

mth row of the matrix argument, and A” ® B” has dimen-
sions NP x M. (See the proof to P 6.4.2 in [7])

The square root factorization of (11) also requires the follow-
ing lemma.

Lemma 2: Let A and B be M x N (M < N) matrices.
Then A A” = B BT if, and only if, there exists an N x N
unitary matrix ® such that A = B®. (See the proof to
Lemma A.5.1 in [4])

Finally, the square root factorization of the ensemble innova-
tions covariance (11) required in (13) is summarized in the
following theorem.

Theorem 3: Let Q; and R; be the unitary and the upper tri-
angular matrices found in the QR decomposition of the matrix

K3

. T
A= |m(CTPeP”)" R A

Then, Ri/f = [Ri](Tl:M) o where [-] ., ) selects the first M
rows of its matrix argument.

Proof. First note that A7 A; = [ﬁi/f 0] [ﬁi/f o}T by
Lemma 1. Then, by Lemma 2, the above impliés that there
exists a unitary matrix ©; such that Al-T = [Ei/f 0] Q;.
Note that the QR decomposition provides the foflowing fac-
torization: A; = Q; R;. Finally, note that AZ-T =RrR;T 9,7
and QiT is a unitary matrix. O

The third and final stage of the EnKS computes the en-
semble approximation to the smoothed estimate

T = Ty + (C;oﬁiﬁ)F;'T Xit1 (18)
and the smoothed error covariance

(19)
where C’; and C! are two additional application dependent
covariance taper matrices.

6. ENSEMBLE KALMAN SMOOTHER
CONVERGENCE

The following theorem addresses the convergence of the
EnKS as the ensemble size L increases. This theorem con-
cerning the asymptotic convergence of the EnKS is important
because it demonstrates that the approach converges to a well
defined limit which we call the localized Kalman smoother
(LKS), shows that the EnKS without covariance tapering is a
Monte Carlo Bryson-Frazier smoother, and provides a means
for investigating the implications of the covariance taper.

Theorem 4: For each time index i, the EnKS estimates ;T:i‘ 1.1
converge in probability to the localized Kalman smoother
(LKS) estimates &}, defined below, i.e., &;1.; > 5./ in
the limit as the ensemble size L — oo.

Proof. The proof proceeds in a manner similar to the EnKF
convergence proof in Appendix III in [5]. Again, Slutsky’s
theorem plays an important role since the ensemble members
in the EnKS are identically distributed but dependent. The
proof proceeds by induction, showing that the terms in each
stage converge in probability to the corresponding terms in the
LKS. The details are omitted because of the close similarity
to the proof from Appendix III in [5]. |

Like the BF KS, the LKS has three stages, the first be-
ing the localized KF defined by (28)-(32) in [5]. The sec-
ond stage is the backwards recursion for the adjoint variable
(where ;‘il =0)

o0 ~ 00

by (I_§?Hi)TF?X§1+HiT(Re,i)_1gfo (20)

K3

where ﬁzoo is the localized Kalman gain (see (28) in [5]) and

R, ,2R,+H,P,, HY &2y —H

i ili—1-

2D

ili—1

The backwards recursion for the covariance of the adjoint
variable is given by (where A;,; = 0)

A = (I_KV;DOHi)TFiTKZl F;(I-K, H;)

+HT (R, ) 'H,. (22)
The final stage combines information in the first two stages
to compute the localized smoothed estimate and error covari-

ance with

B3, = &5+ (CioP) FT X (23)
P =P, — (CioP,)FT (CloA;,,) F;(CioP,).
(24)

The following corollary to Theorem 4 addresses the con-
vergence of the EnKS when no covariance tapering is applied.

Corollary 5: For each time index 4, the unlocalized (C; =
C; = C} = 1) EnKS estimates Z;|;.; converge in probabil-
ity to the LMMSE smoothed estimates ;’Em:], ie., 1.1 LN
z’c\m: 7 in the limit as the ensemble size L — oo.

Proof. When no covariance tapering is applied, the LKS and
BF KS of Section 4 are equivalent. Then, apply the result of
Theorem 4. O

7. NUMERICAL EXAMPLE

The goal in the following experiment is to evaluate the perfor-
mance of the EnKS in a low-dimensional 1-D example. The
problem dimension is small enough that the EnKS state es-
timates can be compared to the KS and LKS estimates. We
show that the bias introduced by covariance tapering in the
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Fig. 1. The left-most image shows the ground truth state (x;) used in the harmonic oscillator numerical example described in
Section 7. The horizontal axis is the time index ¢ and the vertical axis is the nth element of x;. The remaining images show a
comparison of the KS (Z;/1.7), LKS (ifﬁj), and EnKS (z;.7) estimates.

LKS is relatively small and that the EnKS with a relatively
small number of ensemble members provides estimates that
are close to the LKS estimates.

The ground truth x; is the discretized harmonic oscillator
depicted in left-most image in Figure 1. The 1-D example
is discretized on an N = 128 grid and the oscillator passes
through one complete period over I = 32 time steps. A mea-
surement y, consists of M/ = 64 direct noisy observations,
i.e., the matrix H; has M rows, each all zero except for a
single randomly chosen column. Each measurement is cor-
rupted by AWGN at the 30 dB SNR level and the measure-
ment noise covariance matrix is R; = o2 I where o2 is the
noise variance. The initial state mean is p¢; = 0 and the initial
state covariance II; is a Toeplitz matrix with three bands in-
dicating correlation with immediate neighbors only. The state
transition operator is F'; = I, which models the state evolu-
tion as a random walk, and the state noise covariance @, is a
Toeplitz matrix with three bands. Finally, the covariance ta-
per matrices C}, Cg, and Cg' are also a Toeplitz matrix with
three bands.

The results of the experiment are depicted in Figure 1
which shows the output of the KS, LKS, and EnKS when the
ensemble size is L = 16. The qualitative similarity between
the KS and LKS results demonstrates that the covariance ta-
per does not introduce a large bias in this example. Finally,
the similarities between the ensemble method (EnKS) and the
limiting solutions (LKS) demonstrate that the relatively small
ensemble size of L. = 16 is sufficient to obtain qualitatively
faithful estimates in this example. Quantitatively, the relative
error between the ground truth (z; for 1 < ¢ < I) and the KS
(Z;)1:1), LKS (ifﬁj), and EnKS (;|1.7) estimates is 0.193,
0.248, and 0.291, respectively.

8. CONCLUSIONS

This paper has developed a new localized ensemble Kalman
smoother. The theoretical proof of convergence shows that
the approach has a well defined limit as the ensemble size in-
creases and the method is a Monte Carlo approximation to the

localized Kalman smoother. A connection to spatial-temporal
adaptive processing from the radar literature provides the
means to implement a numerically stable ensemble Kalman
filter and smoother. The numerical example has shown the
differences between the LMMSE optimal Kalman smoother,
the biased but deterministic localized Kalman smoother, and
the ensemble Kalman smoother, the Monte Carlo approxima-
tion to the localized Kalman smoother.
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